如何解析Java 数据结构中时间复杂度与空间复杂度

技术如何解析Java 数据结构中时间复杂度与空间复杂度这篇文章给大家介绍如何解析Java 数据结构中时间复杂度与空间复杂度,内容非常详细,感兴趣的小伙伴们可以参考借鉴,希望对大家能有所帮助。算法效率在使用当中,算法效率分

本文介绍了如何分析Java数据结构中的时间复杂度和空间复杂度。内容非常详细。感兴趣的朋友可以参考一下,希望对你有所帮助。

算法效率

在使用中,算法效率分为两种类型,一种是时间效率(时间复杂度),另一种是空间效率(空间复杂度)。时间复杂度是指程序运行的速度。空间复杂度是指算法需要的额外空间。

时间复杂度

什么是时间复杂度

计算程序的运行时间不能用简单的时间来计算,因为不同的处理器有不同的数据处理能力。因此,只有大概的次数就足够了,就像算法中的基本操作被执行的次数一样。用大o的渐近法表示。

示例:计算函数1的基本运算执行了多少次?

void func 1(IntN){ 0

int count=0;

for(inti=0;iN;I){ 0

for(int j=0;jN;j ){

计数;

}

}

for(int k=0;k2 * N;k){ 0

计数;

}

intM=10

while((M-)0){ 0

计数;

}

system . out . println(count);

}func1的基本执行次数为:f(n)=n ^ 2 ^ 2 * n ^ 10

00-1010 1.用常数1替换运行时中的所有加法常数。

2.在修改后的运行时间函数中,仅保留最高阶项。

3.如果最高阶项存在且不是1,则移除乘以该项的常数。结果是大订单。

因此,在使用大O的渐近方法后,函数1的时间复杂度为:O (n 2)

00-1010因为当我们用算法计算的时候,会有最好的情况,最坏的情况和平均的情况。我们常说O(N)中的时间复杂度是最坏的情况。

最好的情况是最小的运行次数。

例1:

void func 2(IntN){ 0

int count=0;

for(int k=0;k2 * N;k){ 0

计数;

}

intM=10

while((M-)0){ 0

计数;

}

system . out . println(count);

}这里的结果是O(N)因为根据时间复杂度的计算方法去掉了常数,所以2*N是N,M 10也可以忽略。

例2:

空隙函数3

(int N, int M) {
    int count = 0;
    for (int k = 0; k < M; k++) {
        count++;
    }
    for (int k = 0; k < N ; k++) {
        count++;
    }
    System.out.println(count);
}

这里的时间复杂度是 O(M+N) 因为 M 和 N 的值是未知的,所以是 O(M+N)

举例三:

void func4(int N) {
    int count = 0;
    for (int k = 0; k < 100; k++) {
        count++;
    }
    System.out.println(count);
}

这个的时间复杂度是 O(1) 因为循环里面是常数,所以根据大 O 渐进法,结果就是 O(1)

计算冒泡排序的时间复杂度

public static void bubbleSort(int[] arr){
    for (int i = 0; i < arr.length; i++) {
        for (int j = 0; j < arr.length - 1 - i; j++) {
            if(arr[j] > arr[j+1]){
                int tmp = arr[j];
                arr[j] = arr[j+1];
                arr[j+1] = tmp;
            }
        }
    }
}

因为冒泡排序的特殊性,可能一次就排好了,也可能得一直排到最后,所以就有了最好情况和最坏情况。

最好情况:就是比较一次,就是 O(N)
最坏情况:一直排到最后,就是 O(N^2)

计算二分查找的时间复杂度

int binarySearch(int[] array, int value) {
    int begin = 0;
    int end = array.length - 1;
    while (begin <= end) {
        int mid = begin + ((end-begin) / 2);
        if (array[mid] < value)
            begin = mid + 1;
        else if (array[mid] > value)
            end = mid - 1;
        else
            return mid;
    }
    return -1;
}

因为二分查找是一半一半的找,所以每次查找之后都会把查找范围减半,比如说在一个 1 - 8 的有序数组里面查找 8 也就是查找最坏情况。图示如下:

如何解析Java 数据结构中时间复杂度与空间复杂度

如图,在数组当中完成二分查找需要 log2n - 1 次也就是时间复杂度是 log2n (就是 log 以 2 为底 n 的对数)

计算阶乘递归的时间复杂度

long factorial(int N) {
	return N < 2 ? N : factorial(N-1) * N;
}

计算递归的时间复杂度:递归的次数 * 每次递归执行的次数。

所以这次递归的时候,基本操作递归了 N 次,所以时间复杂度就是 O(N)

计算斐波那契递归的时间复杂度

int fibonacci(int N) {
	return N < 2 ? N : fibonacci(N-1)+fibonacci(N-2);
}

假设 N 是 5 我们来展开求

如何解析Java 数据结构中时间复杂度与空间复杂度

如图:每次计算都会计算下一层,但是每次都是一边少,一边多。所以就可以直接按照每边一样来计算。如下图:

如何解析Java 数据结构中时间复杂度与空间复杂度

所以就有公式可以计算出每次计算的次数,就是:2 ^ (n - 1) ,所以计算的结果就是:2^\0 + 2^1 + 2^2 + 2^3……2^(n-1) = 2^n+1 所以按照大 O 渐进法来算,结果就是:2^n 。

所以斐波那契数列的时间复杂度就是:2^n 。

空间复杂度

空间复杂度衡量的是一个算法在运行过程当中占用的额外存储空间的大小,因为没必要按照字节来算,而是算变量的个数。也是用大 O 渐进法表示。

计算冒泡排序的空间复杂度

public static void bubbleSort(int[] arr){
    for (int i = 0; i < arr.length; i++) {
        for (int j = 0; j < arr.length - 1 - i; j++) {
            if(arr[j] > arr[j+1]){
                int tmp = arr[j];
                arr[j] = arr[j+1];
                arr[j+1] = tmp;
            }
        }
    }
}

因为冒泡排序的变量并没有变化,使用的是额外空间是常数,所以空间复杂度是 O(1) 。

计算斐波那契数列的空间复杂度(非递归)

int[] fibonacci(int n) {
    long[] fibArray = new long[n + 1];
    fibArray[0] = 0;
    fibArray[1] = 1;
    for (int i = 2; i <= n ; i++) {
        fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
    }
    return fibArray;
}

因为这里的斐波那契数列开辟了 n 个额外空间,所以空间复杂度为 O(n) 。

计算阶乘递归Factorial的时间复杂度

int factorial(int N) {
	return N < 2 ? N : factorial(N-1)*N;
}

因为是递归,每次递归都会开辟栈帧,每个栈帧占用常数个空间,所以空间复杂度就是 O(N) 。

关于如何解析Java 数据结构中时间复杂度与空间复杂度就分享到这里了,希望

内容来源网络,如有侵权,联系删除,本文地址:https://www.230890.com/zhan/71903.html

(0)

相关推荐

  • php获取文件mime类型的几种常用方法

    技术php获取文件mime类型的几种常用方法 php获取文件mime类型的几种常用方法说明
    这些是在文件上传必备的一些验证函数,文件上传这一块要是不做好安全防护,肯定被人登录后台拿你源码的
    MIME类型

    礼包 2021年12月14日
  • 蛋糕不蓬松的原因,蛋糕做出来会塌不泡是什么原因

    技术蛋糕不蓬松的原因,蛋糕做出来会塌不泡是什么原因蛋糕的膨发情况就与蛋白打发状态息息相关。蛋糕烤出来回缩蛋糕不蓬松的原因、总是膨发不起来是因为蛋白打发不到位,所以就算加了泡打粉也膨胀不起来。蛋糕塌陷!大家都知道热胀冷缩的

    生活 2021年10月30日
  • 个人建设银行账户查询,建设银行个人账户余额查询

    技术个人建设银行账户查询,建设银行个人账户余额查询建行银行卡查询余额的办法有个人建设银行账户查询:1.网点查询:持卡人携带身份证、银行卡前往任一建行营业厅,向工作人员提出查询余额申请,在验证个人身份后即可查询。2.ATM

    生活 2021年10月22日
  • cloudera manager 集群要求(cloudera hadoop 管理员认证)

    技术如何在Cloudera Manager中使用SAML配置身份认证这篇文章主要为大家展示了“如何在Cloudera Manager中使用SAML配置身份认证”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小

    攻略 2021年12月24日
  • ASP.NET Core中使用滑动窗口限流的问题举例分析

    技术ASP.NET Core中使用滑动窗口限流的问题举例分析本篇内容主要讲解“ASP.NET Core中使用滑动窗口限流的问题举例分析”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家

    攻略 2021年12月10日
  • 聚焦近义词,“盯着”的近义词是什么

    技术聚焦近义词,“盯着”的近义词是什么见、视、瞧、瞥、瞄、目、相、窥、探、扫、白、瞪、望、盼、眺、睇、睨。“看”的口语化俗语,普通话有“瞧”、“瞅”等,粤语则是“睇”。“睇”字在香港随处听到,用的频率比“看”多百倍!其实

    生活 2021年10月30日