CodeChef Weird Product

技术CodeChef Weird Product CodeChef Weird ProductCodeChef Weird Product
? 设 \(p_k=\sum\limits_{i=1}^kA

奇怪的产品

CodeChef Weird Product

?设\(p_k=\sum\limits_{i=1}^ka_ix^i\),且\(p_0=0\)。则\(\对于所有1 \ le I \ le j \len,\,w(i,j)=\dfrac{p_j-p_{i-1}}{x^i}\)。于是有

\[\begin{align*}p=\prod_{i=1}^n\prod_{j=i}^nw(i,j)^2\\=\left(\prod_{i=0}^n\prod_{j=i 1}^n\dfrac{p_j-p_i}{x^{i 1}}\right)^2\\=\dfrac{\left(\prod\limits_{i=0}^n\prod\limits_{j=i 1}^n(p_j-p_i)\right)^2}{x^{2\times \sum\limits_{i=1}^ni\cdot(n-i)}}\end{align*}

\]上式中的分母很好计算,现在主要考虑如何计算分子。

?注意到\((p_j-p_i)^2=-(p_j-p_i)\cdot(p_i-p_j)\),则可以考虑将分子变形为

\[\begin{align*}\operatorname{numerator}(p)=(-1)^{\frac{n\cdot(n 1)}{2}}\prod_{i=0}^{n}\prod_{j\neq I }(p _ j-p _ I)\ end { align * }

\]设\(f(I)=\ prod \ limits _ { j \ neq I }(p _ I-p _ j)\),那么有

\[\begin{align*}\operatorname{numerator}(p)=(-1)^{\frac{n\cdot(n 1)}{2}}\prod_{i=0}^{n}(-1)^{n}f(i)\end{align*}

\]可以考虑直接将\(f(0\ldots N-1)\)求出来。

?注意到\(f(i)\)的结构非常相似,因此我们的想法是找到一个多项式\(F(x)\)满足\(f(i)=F(p_i)\)。如果找到了这样的\(F(x)\),那么就可以对\(F(x)\)做一遍多项式多点求值来求出\(f(i)\)。

?于是我们可以考虑类似于拉格朗日插值定理那样的方式去构造:设\(f(x)=\sum\limits_{i=0}^n\prod\limits_{j\neq I }(x-p _ j)\),则有等式\(F(p _ I)=\ prod \ limits _ { j \ neq I }(p _ I-p _ j)=F(I)\)。那么又该如何将\(F(x)\)求出来呢

?让我们先考虑另一个多项式\(g(x)=\prod\limits_{i=0}^n(x-p_i)\)。那么就有\(f(x)=\sum\limits_{i=0}^n\dfrac{g(x)}{x-p_i}=g'(x)\)。于是只要将\(G(x)\)求出来再对其求导就行了。

?至于如何求\(G(x)\)可以用启发式合并NTT的方法,时间复杂度为\(\数学cal o(n \ log ^2n)\);对\(F(x)\)进行多项式多点求值的时间复杂度也是\(\数学O(N\log ^2N)\)的。总时间复杂度就是线对平方。

参考代码

#包含位/stdc .h

使用命名空间标准;

/**

此处省略多项式全家桶的模板

**/

静态常量expr值_ t mod=poly : p;

内联value_t add(value_t x,value _ t y){ return(x=y)=mod x-mod : x;}

内联value_t mul(value_t x,value _ t y){ return(int 64 _ t)x * y % mod;}

内联value_t add_eq(value_t x,value_t y) { return x=add(x,y);}

inline value_t mul_eq(value_t x,value_t y) { return x=mul(x,y);}

内联值_t qpow(值_t x,int 64 _ t y){ 0

value _ t r=1;

for(;y;y=1,mul_eq(x,x))

(y 1) (mul_eq(r,x));

返回r;

} //qpow

static constexpr int Maxn=1e5 5

int N;

value_t X,iX,Xp,A[Maxn];

value_t p[Maxn],P;

poly getG(int l,int r){ 0

if (l==r)返回保利{!p[l] 0 : mod - p[l],1 };

int mid=(l r)1;

返回getG(l,mid) * getG(mid 1,r);

} //getG

int main(void){ 0

内部测试;

scanf("% d ",测试);

而(测试-){ 0

scanf('%d%u ',N,X);

p[0]=0;XP=1;

iX=qpow(X,mod-2);

for(int I=1;I=N;I){ 0

scanf('%u ',A[I]);

p[i]=add(p[i - 1],mul(A[i],mul_eq(Xp,X)));

}

自动f=getG(0,N).导数()。求值(向量(p,p ^ n1);

bool neg=((int 64 _ t)n *(n ^ 1)/2)% 2==1);

value _ t num=1;

for(int I=0;I=N;i) mul_eq(num,f[I]);

int 64 _ t exp=(int 64 _ t)n *(n ^ 1)*(n ^ 2)/3;

exp %=(mod-1);

value_t dinom=qpow(iX,Exp);

P=mul_eq(num,dinom);

printf('%u\n ',neg(!P 0 : mod-P): P);

}

退出(EXIT _ SUCCESS);

} //main

内容来源网络,如有侵权,联系删除,本文地址:https://www.230890.com/zhan/147924.html

(0)

相关推荐

  • 为什么香港服务器租用要选择优质服务商

    技术为什么香港服务器租用要选择优质服务商租用香港服务器可以为您提供大量不同的优势,这些优势对您和您的业务都有增益。选择可靠的服务商,您还将获得更有效、更专业和技术支持。高速网络和正常运行时间的性能表现也能将您的业务提升到

    礼包 2021年12月14日
  • vue权限控制按钮显示隐藏(vue按钮级别权限控制)

    技术vue按钮怎么实现权限控制这篇文章主要讲解了“vue按钮怎么实现权限控制”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“vue按钮怎么实现权限控制”吧!一、步骤1.定义

    攻略 2021年12月23日
  • 玩具(Toy)

    技术玩具(Toy) 玩具(Toy)清华OJ——数据结构与算法实验(中国石油大学)玩具(Toy)Description
    ZC God is best at logical reasoning. One d

    礼包 2021年11月27日
  • 网络协议tcp和udp(tcp和udp协议通过什么区分)

    技术网络协议TCP和UDP怎么理解这篇文章主要讲解了“网络协议TCP和UDP怎么理解”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“网络协议TCP和UDP怎么理解”吧!国际

    攻略 2021年12月21日
  • 树莓派如何连接WPA2企业级802.1X保护WIFI

    技术树莓派如何连接WPA2企业级802.1X保护WIFI树莓派如何连接WPA2企业级802.1X保护WIFI,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。让

    攻略 2021年11月19日
  • 显示器设置,戴尔2721d显示器设置

    技术显示器设置,戴尔2721d显示器设置1显示器设置、以win7系统为例,打开戴尔显示器,在屏幕左下角打开开始选项并选择其中的“控制面板”。
    2、然后在打开的“控制面板”中选择“外观和个性化”选项。
    3、然后在打开的新页

    生活 2021年10月27日