Pandas数据分析实用小技巧有哪些

技术Pandas数据分析实用小技巧有哪些这篇文章给大家分享的是有关Pandas数据分析实用小技巧有哪些的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。小技巧1:如何使用map对某些列做特征工程?

这篇文章是为了和大家分享一些关于熊猫数据分析的有用技巧。我觉得边肖很实用,就和大家分享一下作为参考。让我们跟着边肖看一看。

小技巧1:如何使用map对某些列做特征工程?

教师数据:

d={ '性别' :['男','女','男','女','颜色' :['红','绿','蓝','绿'],'年龄' :[25,30,15,32]

}df=pd。数据帧(d)dfPandas数据分析实用小技巧有哪些

在“性别”列中,使用map方法快速完成以下映射:

d={ '男' :0,'女' :1}

df['gender2']=df['gender']。地图(d)Pandas  数据分析 5 个实用小技巧

小技巧2:使用 replace 和正则清洗数据

熊猫的实力在于数据分析,自然数据清洗不可或缺。

一种快速数据清理技术,在列上使用替换方法和正则化来快速清理值。

源数据:

d={ '客户' :['A ',' B ',' C ',' D ','销售' :[1100,' 950.5RMB ',' 400美元',' 1250.75美元']}

Df=pd。数据帧(d)df打印结果:

客户名称

0A11001B950.5RMB人民币

2C$4003D$1250.75看销售栏的数值,包括整数、浮点人民币然后是字符串、美元整数和美元浮点人民币。

我们的目标:清洗人民币,$符号,并将此列转换为浮点。

一行代码完成:(点击代码区,向右滑动查看完整代码)

df['sales']=df['sales']。替换('[$,人民币]','',正则表达式=真)\。astype('float ')使用常规替换将要替换的字符放入列表[$,RMB]中,并用空字符替换,即“”;

最后,使用astype进行浮动。

打印结果:

sales 0a 1100 . 001 b 950 . 502 c 400 . 003d 1250 . 75如果您不放心,请检查以下值的类型:

Df['销售']。应用(类型)打印结果:

类“float”1类“float”2类“float”3类“float”

【python学习交流群】

10-1010构造一个DataFrame:

d={ 0

\"district_code": [12345, 56789, 101112, 131415],"apple": [5.2, 2.4, 4.2, 3.6],"banana": [3.5, 1.9, 4.0, 2.3],"orange": [8.0, 7.5, 6.4, 3.9]}df = pd.DataFrame(d)df

打印结果:

district_code apple banana orange0123455.23.58.01567892.41.97.521011124.24.06.431314153.62.33.9

5.2 表示 12345 区域的 apple 价格,并且 apple, banana, orange,这三列都是一种水果,那么如何把这三列合并为一列?

使用 pd.melt

具体参数取值,根据此例去推敲:

df = df.melt(\
id_vars = "district_code",
var_name = "fruit_name",
value_name = "price")
df

打印结果:

district_code fruit_name price012345 apple 5.2156789 apple 2.42101112 apple 4.23131415 apple 3.6412345 banana 3.5556789 banana 1.96101112 banana 4.07131415 banana 2.3812345 orange 8.0956789 orange 7.510101112 orange 6.411131415 orange 3.9

以上就是长 DataFrame,对应的原 DataFrame 是宽 DF.

小技巧4:已知 year 和 dayofyear,怎么转 datetime?

原 DataFrame

d = {\"year": [2019, 2019, 2020],"day_of_year": [350, 365, 1]
}df = pd.DataFrame(d)df

打印结果:

 year day_of_year
0201935012019365220201

转 datetime 的 小技巧

步骤 1: 创建整数

df["int_number"] =
df["year"]*1000 + df["day_of_year"]

打印 df 结果:

year day_of_year int_number
0201935020193501201936520193652202012020001

步骤 2: to_datetime

df["date"]=pd.to_datetime(df["int_number"],format = "%Y%j")

注意 "%Y%j" 中转化格式 j

打印结果:

 year day_of_year int_number date
0201935020193502019-12-161201936520193652019-12-3122020120200012020-01-01

小技巧5:如何将分类中出现次数较少的值归为 others?

这也是我们在数据清洗、特征构造中面临的一个任务。

如下一个 DataFrame:

d = {"name":['Jone','Alica','Emily','Robert','Tomas','Zhang','Liu','Wang','Jack','Wsx','Guo'],"categories": ["A", "C", "A", "D", "A","B", "B", "C", "A", "E", "F"]}
df = pd.DataFrame(d)df

结果:

 name categories
0 Jone A1 Alica C2 Emily A3 Robert D4 Tomas A5 Zhang B6 Liu B7 Wang C8 Jack A9 Wsx E10 Guo F

D、E、F 仅在分类中出现一次,A 出现次数较多。

步骤 1:统计频次,并归一

frequencies = df["categories"].value_counts(normalize = True)
frequencies

结果:

A 0.363636B 0.181818C 0.181818F 0.090909E 0.090909D 0.090909Name: categories, dtype: float64

步骤 2:设定阈值,过滤出频次较少的值

threshold = 0.1small_categories = frequencies[frequencies < threshold].indexsmall_categories

结果:

Index(['F', 'E', 'D'], dtype='object')

步骤 3:替换值

df["categories"] = df["categories"] \
.replace(small_categories, "Others")

替换后的 DataFrame:

 name categories
0 Jone A1 Alica C2 Emily A3 Robert Others4 Tomas A5 Zhang B6 Liu B7 Wang C8 Jack A9 Wsx Others10 Guo Others

感谢各位的阅读!关于“Pandas数据分析实用小技巧有哪些”这篇文章就分享到这里了,希望

内容来源网络,如有侵权,联系删除,本文地址:https://www.230890.com/zhan/126961.html

(0)

相关推荐

  • Web of Science数据库与SCI论文的辩证关系是什么

    技术Web of Science数据库与SCI论文的辩证关系是什么Web of Science数据库与SCI论文的辩证关系是什么,针对这个问题,这篇文章详细介绍了相对应的分析和解答,希望可以帮助更多想解决这个问题的小伙伴

    攻略 2021年12月2日
  • 221. 最大正方形

    技术221. 最大正方形 221. 最大正方形在一个由 '0' 和 '1' 组成的二维矩阵内,找到只包含 '1' 的最大正方形,并返回其面积。
    来源:力扣(LeetCode)
    链接:https://le

    礼包 2021年12月21日
  • 怎样结合Jexus+Kestrel 部署asp.net core生产环境

    技术怎样结合Jexus+Kestrel 部署asp.net core生产环境本篇文章为大家展示了怎样结合Jexus+Kestrel 部署asp.net core生产环境,内容简明扼要并且容易理解,绝对能使你眼前一亮,通过

    攻略 2021年11月19日
  • 电动车好学吗,大提琴好学还是中提琴好学

    技术电动车好学吗,大提琴好学还是中提琴好学我是学小提琴的电动车好学吗,我只想告诉楼主大提琴你上了高中开始学都来的及,中提琴难度和小提琴差不多,必须从小开始练琴,我们好多现在学中提琴的同学都是从小提琴转过来的,练大提琴的同

    生活 2021年10月22日
  • vue 组件对外暴露方法(vue 中的store如何存取数据)

    技术Vue中怎样把数据包装成reactive从而实现MDV效果Vue中怎样把数据包装成reactive从而实现MDV效果,很多新手对此不是很清楚,为了帮助大家解决这个难题,下面小编将为大家详细讲解,有这方面需求的人可以来

    攻略 2021年12月25日
  • Mysql数据库多实例配置的示例分析

    技术Mysql数据库多实例配置的示例分析小编给大家分享一下Mysql数据库多实例配置的示例分析,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!二进制安装:
    [root@lufengcentos ~]# m

    攻略 2021年11月18日